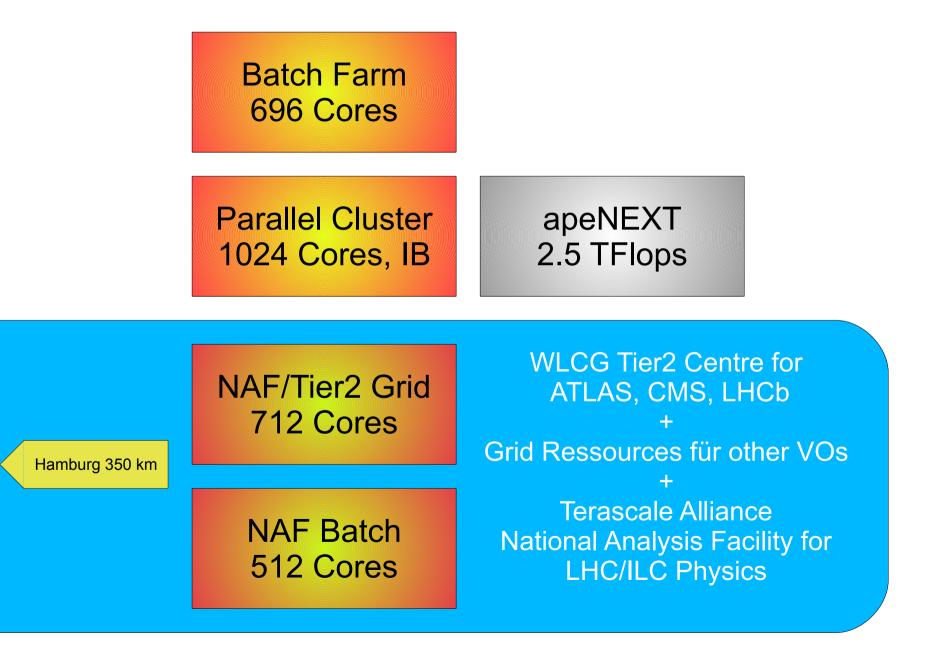
Update on Storage.

Handling of Scientific Data at DESY, Location Zeuthen

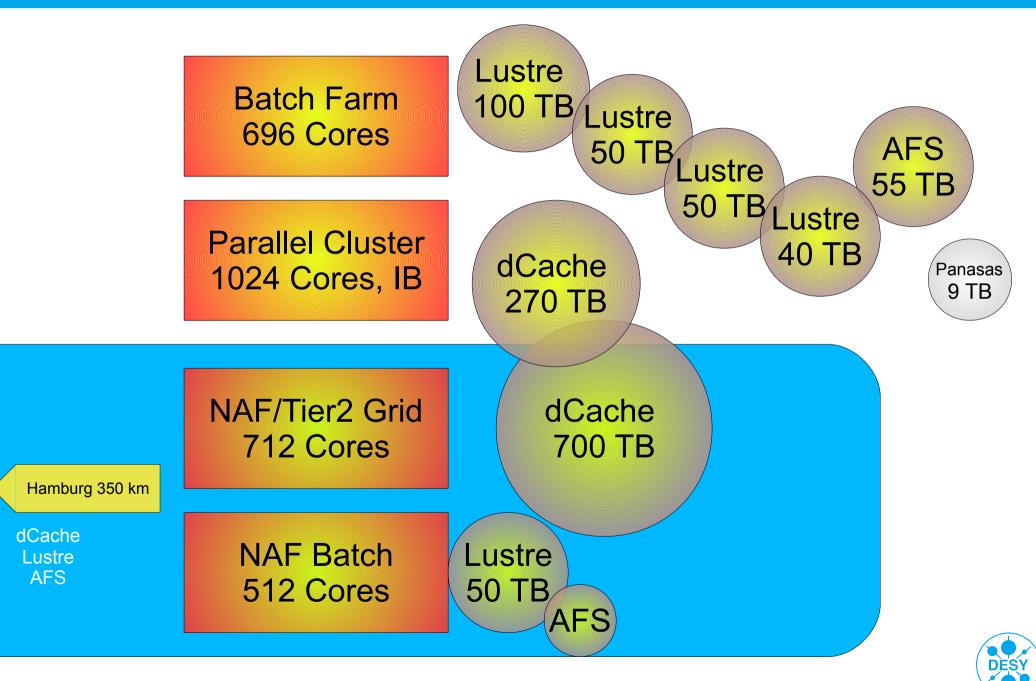
Stephan Wiesand DESY – DV –

Technical Seminar Zeuthen, 2010-06-29

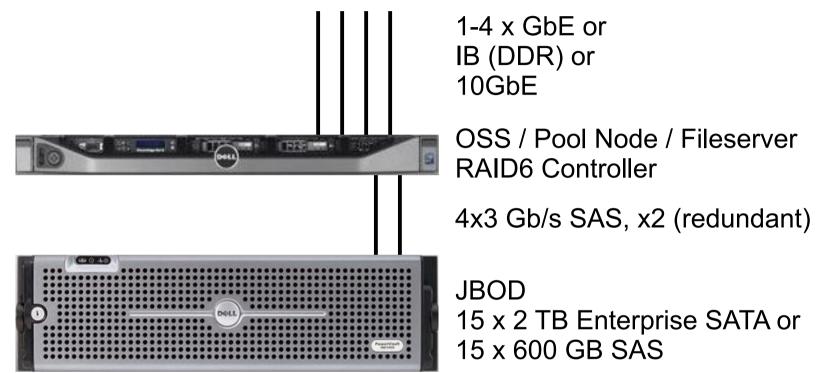


Agenda

- topic: bulk data
 - event data, simulation results, lattice configurations
 - derived datasets (ntuples), calibration data,
- technology of storage solutions used in Zeuthen
 - filesystems
 - > AFS, Lustre, dCache
 - hardware
- > implications for
 - efficient use
 - planning
- > alternative & future solutions



Computing at DESY, Location Zeuthen



Computing + Disk Storage at DESY, Location Zeuthen

The Storage Brick

> direct Attached Storage. Typical configuration:

> OS: S5L 64-bit

- automatic, central installation, configuration, maintenance, monitoring
- just as for compute nodes (all systems fully patched)

Another Typical Configuration

> server + 12 x 3.5" disks in a 2 HU box

> 20 TB raw net capacity at RAID6 with 2 TB SATA drives

- up to 0.4 PB in a single rack (peak power consumption ~ 8 kW)
- or: 1.4 TB raw net capacity with 146 GB 15k SAS drives
 - ~ 20 x performance/capacity for streaming access
 - > even better for random I/O
- > several configurations in between
- > => can tailor hardware configuration to application needs
 - general tradeoff: speed vs. cost/space/power

Advantages of Direct Attached Storage

- > compared to large storage devices behind a SAN:
 - cost
 - > x 2 ... x 10
 - performance
 - simplicity
 - Ieveraging existing know how & methods, including monitoring
 - > as already used for compute nodes & other servers
 - incremental growth
 - > at current
 - market price
 - performance
 - space density
 - power efficiency
 - hardware configuration tailored to actual use case
 - rapid purchase and deployment

Data and Metadata

- data: the actual file content
- metadata: information about a file
 - > filename, parent directory (=> path)
 - > ownership
 - > permissions
 - Iocation
- > AFS, Lustre, dCache allow aggregating file servers
 - into a single namespace
- > common concept to do this: separating data and metadata
- > => typical: data scales very well, metadata doesn't
 - but different filesystems behave differently
 - notice data : metadata ~ average file size

Volume Location Database cluster at application level

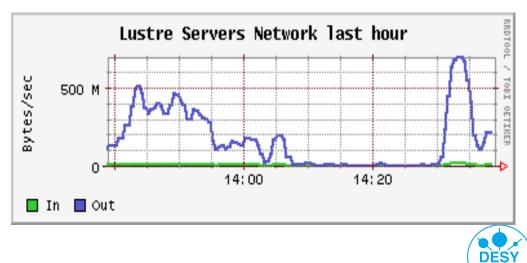
- volume based
 - namespace is constructed from embedded mount points
 - R/O replication, asynchronous
 - transparent migration
 - volume quotas (2 TB max)
- > metadata:
 - volume location data: small amount, low transaction rate
 - > no scalability problems (at our size)
 - per file metadata resides on the fileserver, within the volume
 - scales ok

AFS: Advantages

- reasonably secure
- > available on farm, cluster, WGS, PC
- > group space administration delegated to group admins
 - afs_admin
- backup selectable per volume (matching quota)
 - separate group quotas for space with/without backup
 - files from backup can be retrieved by users
- > easy to separate user groups/activities (dedicated fileservers)
- > usable ACLs (per directory), working the same way on each client
- clients available for Linux, Windows & others (OS X, Solaris)
- metadata transaction capacity scales with number of fileservers

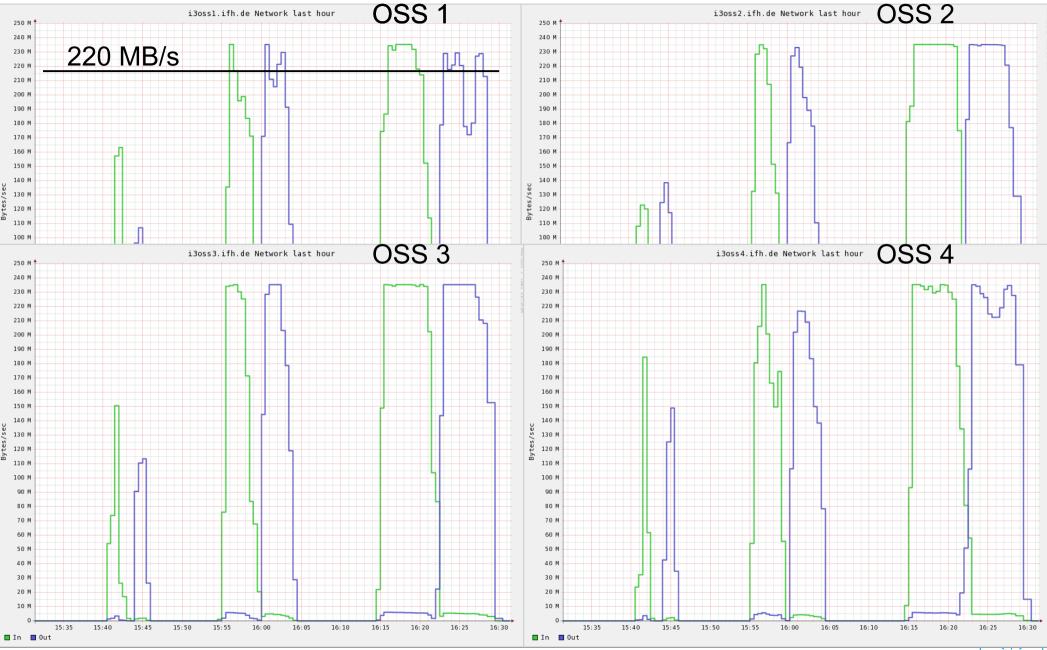
AFS: Disadvantages

- > AFS token required for authenticated access
 - expires
- > client relatively slow
 - persistent client side cache helps in some cases, hurts in others
 - has much improved in recent years, more improvements soon
 - we do not recommend to use Atrans/afscp any more
 - will be removed from our systems soon
- volumes are confined to their fileserver partition
 - data is not distributed over fileservers automatically
 - not file by file (or even stripe by stripe)
 - scalable throughput can still be achieved
 - but requires distribution of data over volumes
 - and smart placement of those on different servers
 - > does not work in practice



Metadata Server

- Iooks like a single POSIX filesystem to the client
- files are distributed round robin across OSTs when created
 - automatically
- single files can even be striped across OSTs (not advisable for common usage)
- real life performance of our first Lustre instance: (3 OSSs with 2 x 1 GbE each)



Performance: AFS vs. Lustre in Burn-In Tests

DESY

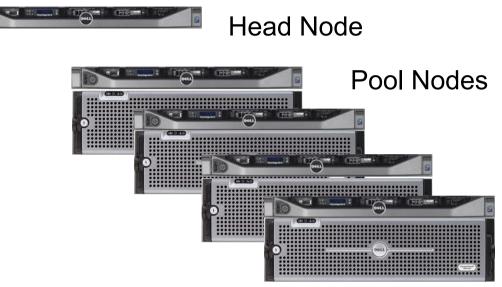
Lustre Burn-In Test

Lustre: Advantages

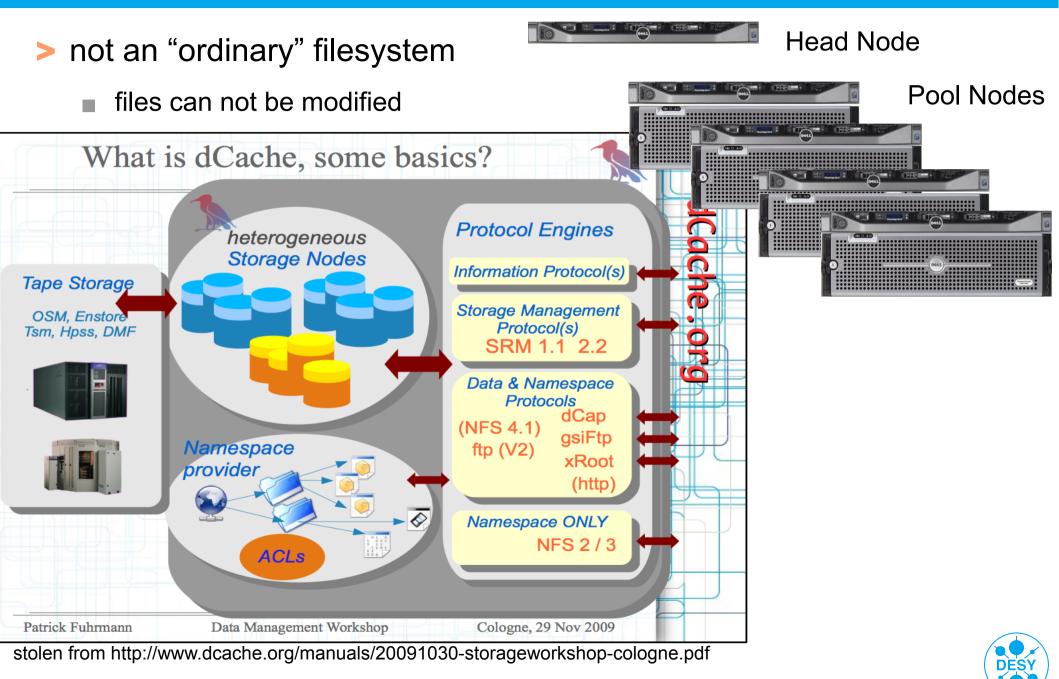
- high & scalable data performance, large filesystems
 - without hassle for users
- fast client
 - single client easily saturates a GbE connection
 - uses the operating system cache
- > supports modern, fast interconnects
 - in particular: Infiniband
 - have seen 500 MB/s for a single client-server connection
- > multihomed servers & clients possible
 - fast infiniband access from some clients to some servers
 - ordinary ethernet for other combinations
- more useful features on the roadmap

Lustre: Disadvantages

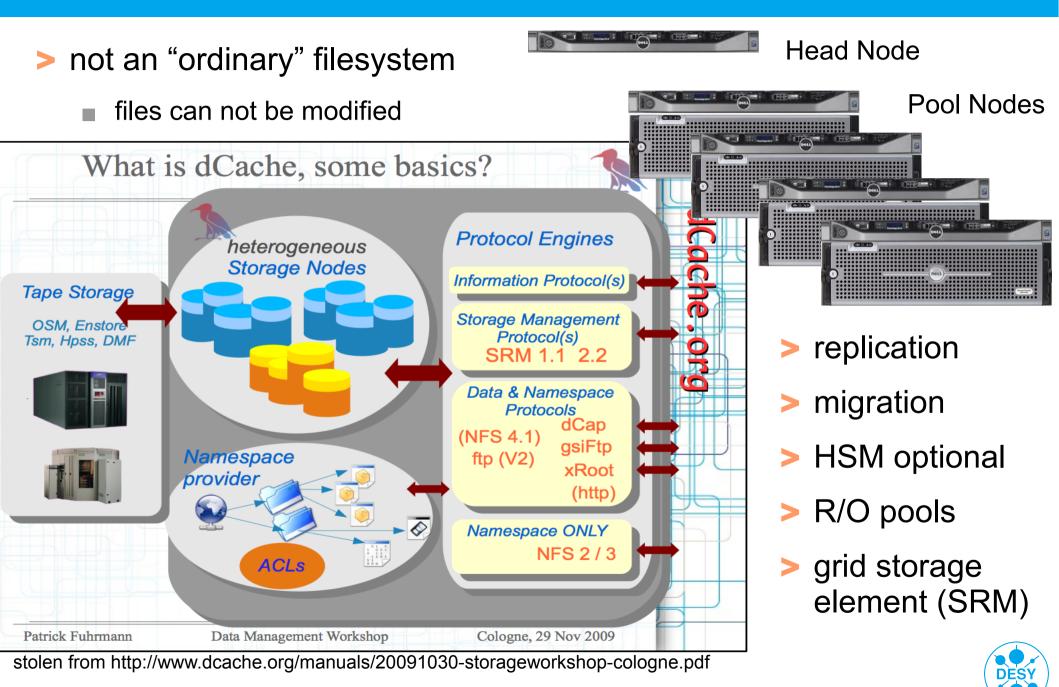
- > public roadmap no longer exists
 - future slightly unclear
- > not as mature as other filesystems yet
 - does not cope well with network problems
- missing features
 - transparent migration, replication
 - security (anything better than auth sys)
 - > can only be made available to trusted clients over trusted networks farm, cluster, WGS - not PCs, notebooks, foreign clients
- ACLs: POSIX draft not as useful as AFS ACLs, and harder to use
- quota: user/group quota not as useful as volume concept
- tight coupling of servers and clients
 - client crash significant event causing delays for other clients

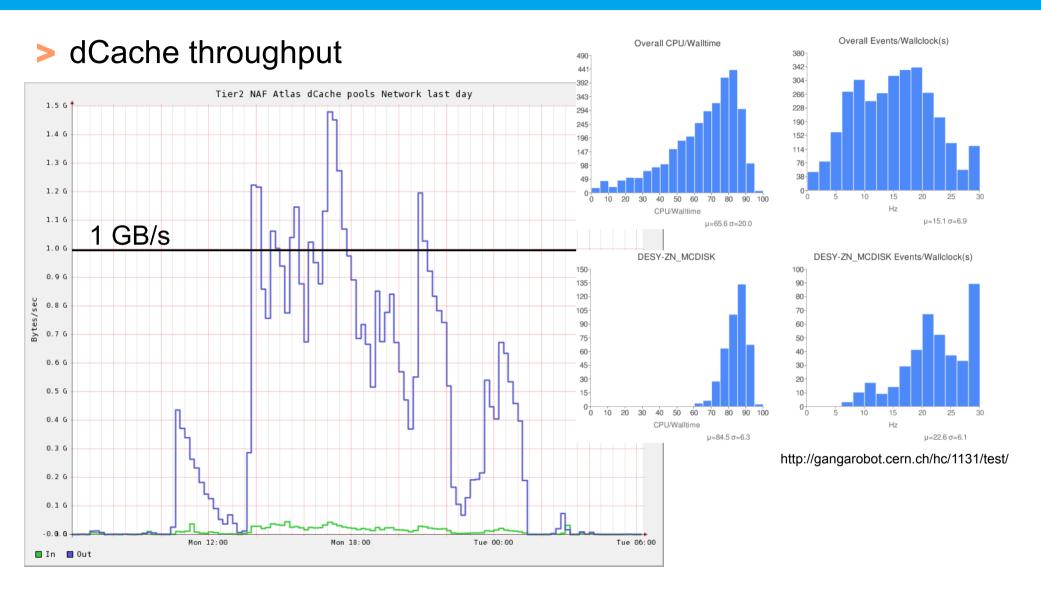

Lustre: "Problem"

- metadata for each and every file resides on a single MDS
 - aggregate lookup/open/create performance limited by single server
 - can be a real problem if many clients rapidly access different files
- > a small file (say,1 kB) takes up as much space on the MDS as on the OSS
 - and accessing it probably causes more work on the MDS
- > => not suitable for (many) small files
- storing large amounts of data in small files is always a bad idea
 - but on Lustre, it's particularly bad
 - > performance can easily become worse than with AFS
- storing a TB in 100 byte chunks should not be done using files
 - use a database instead

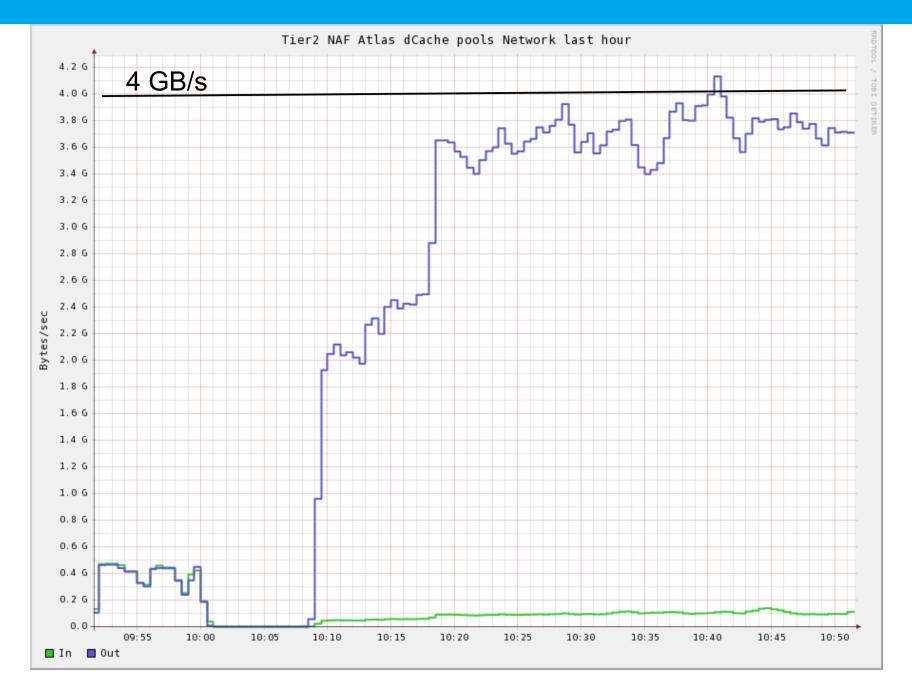

dCache

- > not an "ordinary" filesystem
 - files can not be modified




dCache

dCache



ATLAS Hammercloud Tier2 Site Test, March 2nd, 2010

dCache Throughput Test

dCache: Setup Options

- > classic: disk cache in front of tape storage
 - dedicated read & write pools
 - > cheap read pools, best quality write pools
 - or general purpose pools
 - disk space is reused according to "least recently used" policy
 - but pinning files is possible
 - files no longer available in a read pool can be "prestaged"
 - > contact uco if planned for large number of files (efficiency)
- > can just as well be used without tape backend
- > pools are dedicated to storage groups (one or more)
- > files can be cloned automatically
 - to 2nd tape, for precious data
 - to other disk pools, to improve resilience and/or performance

dCache: Access

> no access with the normal tools or libraries like cp, open(), ...

> pnfs

- nfsv2 export by head node mounted on /acs on our clients
- provides POSIX-like access to the namespace only
 - Is works, but cp still doesn't
- > native access: dcap (dCache access protocol)
 - dc_open(), dc_read(), ... calls from libdcap
 - some HEP applications (like ROOT) come with dcap support
- the preload library libpdcap enables access with dynamically linked, normal applications
 - does not work well with all applications
 - deprecated, library no longer maintained

Example: Accessing Files in dCache

copy to local disk

% dccp /acs/users/wiesand/Event.root /tmp

vsing ROOTs native dcap support:

```
% root
[...]
root [0] f=TFile::Open("dcache:///acs/users/wiesand/Event.root")
```

> using the preload library:

```
% export LD_PRELOAD=/opt/products/dcache/default/lib64/libpdcap.so
% root
[...]
root [0] f=TFile::Open("/acs/users/wiesand/Event.root")
```

> may look similar

- but very different under the hood
- prefer native access if possible

> get a transfer URL for the desired protocol, then use it:

dcap

% lcg-gt srm://lcg-se0.ifh.de/pnfs/ifh.de/data/atlas/users/ahaupt/data.lm dcap dcap://lcg-dc0.ifh.de:22125//pnfs/ifh.de/data/atlas/users/ahaupt/data.lm

dccp dcap://lcg-dc0.ifh.de:22125/pnfs/ifh.de/data/atlas/users/ahaupt/data.lm /tmp/test
1048576 bytes in 0 seconds

gsidcap

% lcg-gt srm://lcg-se0.ifh.de/pnfs/ifh.de/data/atlas/users/ahaupt/data.1m gsidcap gsidcap://lcg-se0.ifh.de:22128//pnfs/ifh.de/data/atlas/users/ahaupt/data.1m

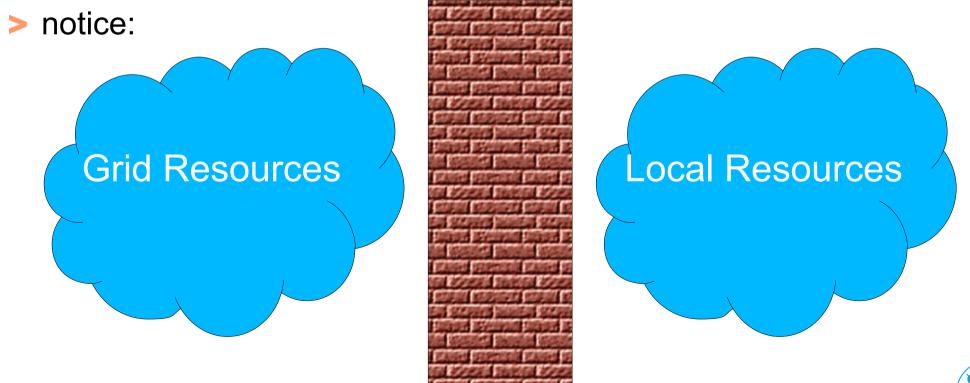
% dccp gsidcap://lcg-se0.ifh.de:22128/pnfs/ifh.de/data/atlas/users/ahaupt/data.1m /tmp/test 1048576 bytes in 0 seconds

gsiftp

% lcg-gt srm://lcg-se0.ifh.de/pnfs/ifh.de/data/atlas/users/ahaupt/data.lm gsiftp gsiftp://ssu36.ifh.de:2811//pnfs/ifh.de/data/atlas/users/ahaupt/data.lm

% globus-url-copy gsiftp://ssu36.ifh.de:2811//pnfs/ifh.de/data/atlas/users/ahaupt/data.1m \
file:///tmp/test

srm


% lcg-cp srm://lcg-se0.ifh.de/pnfs/ifh.de/data/atlas/users/ahaupt/data.1m file:///tmp/test

% srmcp -streams_num=1 srm://lcg-se0.ifh.de:8443/pnfs/ifh.de/data/atlas/users/ahaupt/data.1m
file:////tmp/test

dCache / SRM: Beware of Firewalls

- > commands on last slide are available after ini glite
- important to access files from firewalled clients:
 - export DCACHE_CLIENT_ACTIVE=1
 - by default, the pool node tries to connect to the client
 - > for the same reason, srmcp requires -stream_nums=1 to work

dCache: Advantages

- > most versatile
- > many different access options
 - Iocal access via dcap, gsidcap
 - > pnfs available on central systems only (farm, cluster, WGS)
 - access from anywhere via gsiftp, srm
 - > all our dCache storage is grid-enabled
 - in future, will add WebDAV, pNFS (NFS 4.1)
- very good aggregate performance

dCache: Disadvantages

- > no immediate POSIX access
 - pNFS will remedy this, but may take a while
- > files cannot be modified, only deleted and rewritten
 - this won't change
- > modest single client performance, no Infiniband support
- > Head Node is equivalent to Lustre MDS
 - single point of failure
 - limits scalability
 - dCache is no more suitable for small files than Lustre
 - > especially with tape backend
 - small files do not belong on tape
 - > abysmal performance
 - > wear & tear due to shoe shining, mount operations

> free:

- PVFS (open source, from Argonne & Clemson Universisty)
 - simple parallel filesystem deliberately sacrificing features

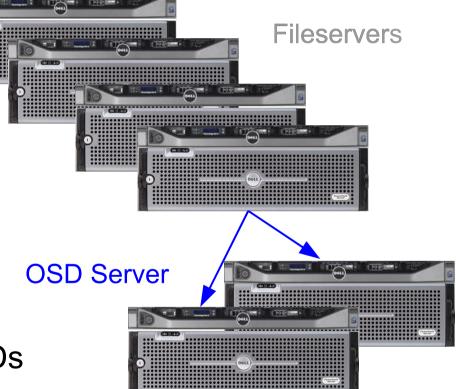
no locks

- FHGFS (closed source, binary only, available for RHEL)
 - > parallel filesystem from Fraunhofer Society
 - > commercial support available for a fee
- > commercial:
 - Panasas
 - GPFS, optional tape backend with HPSS (IBM)
 - supported Lustre storage from Oracle (, HP, DDN)
- > under development:
 - AFS/OSD

Recall: AFS

Volume Location Database cluster at application level

- volume based
 - namespace is constructed from embedded mount points
 - R/O replication, asynchronous
 - transparent migration
 - volume quotas (2 TB max)
- > metadata:
 - volume location data: small amount, low transaction rate
 - > no scalability problems (at our size)
 - per file metadata resides on the fileserver, within the volume
 - scales ok

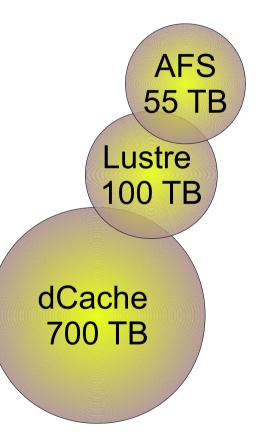


AFS + OSD - A Promising Development

Volume Location Database cluster at application level

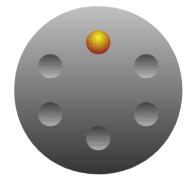
- volume based
 - namespace is constructed from embedded mount points
 - R/O replication, asynchronous
 - transparent migration
 - volume quotas (2 TB max)
- small files stored on fileserver
- > large files stored (or striped) on OSDs
- parallel access to OSDs by clients
 - possibly with direct access to backing filesystem (Lustre, GPFS)
- http://www.rzg.mpg.de/projects/hsm-afs

Conclusion


- > AFS, Lustre, dCache all have their strengths and weaknesses
 - probably true for any filesystem, including commercial solutions
 - no silver bullet
- but a viable solution is available for all use cases
 - except for tons of small files
- > current options: 3 filesystems (x) many hardware configurations
- the key to success is finding the right setup for a project
- best practice for new deployments:
 - meeting of a few project members with -DV- storage experts
 - to find out the actual requirements
 - > and the most suitable solution

Summary

- From common storage bricks using DAS, flexible storage solutions are built to users' needs.
- This Ansatz and the three Filesystems are doing well in practice.
- Solutions based on Lustre and dCache can be very performant.
- > AFS is not going to break any speed records. It has other virtues though. And with the OSD enhancement, it could become a very good compromise for many use cases.
- The most important ingredient is communication between users and providers of storage.



Final Remark: About Using Desktop PCs for Storing Data

- single SATA drive
 - PC class
 - > not meant for heavy duty
- > no redundant power
- > no UPS
- > no backup
- > possibly physical access by others
- very limited monitoring
- > no consistency checks
- > not accessible except locally
 - ssh possible except when someone else turned off the PC
- > => just don't do it

